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ABSTRACT

Actual evapotranspiration (ET) is a basic term in the hydrology cycle and water balance of 
catchment. In this research an artificial neural network, with multilayer perception structure, and 
empirical equations Advection–Aridity of Granger and Gray and Combination Equations was 
adapted and evaluated to model ET by means of conventional climatic data. The estimates of 
the models are also compared with those of the monthly actual ET of Ammameh catchment 
obtained through water balance equation. Combination Equation with R2 of 0.84 and RMSE 
of 0.46 performed better than the other empirical models. 

The best ANN model between 13 different combination and empirical model is ANN5 with 
minimum, maximum temperature and pan evaporation in the model input and with R2 of 0.88 
and RMSE of 0.32 mm per day. 

The ANN1 with Minimum and maximum temperature as model inputs, with R2 of 0.83 was 
a poor performer, but the R2 differed by only 1% when compared to the performance of the 
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Combination Equation with eight climate parameter input. The R2 in ANN14 is 2% better than 
with combination Equation. Also ANN3 with R2 of 0.87 and accuracy 0.32 mm per day,  with only 
combination of air temperature and wind speed is an appropriate model due to approximating 
the superior accuracy of ANN1 and toward ANN5 on account of lesser data requirement. The 
results of research show that actual evapotranspiration can be estimated successfully with 
6% difference in R2 in comparison with Combination Equation using available climate data.

Key words: Evapotranspiration, Artificial neural network models, empirical methods, water 
balance, Jajroud river catchment.

RESUME ET CONCLUSIONS

L’évapotranspiration réelle (AET) est un terme de base dans le cercle l’hydrologie et le bilan 
hydrique des bassins versants. Corriger détermine dans le bilan hydrologique, gestion des 
ressources hydriques, faire des barrages et des eaux de surface est de réglementer problème 
important pour l’ingénierie de l’eau.

Dans cette recherche d’un réseau de neurones artificiels, avec structure perception 
multicouche, et des équations empiriques advection-aridité (AA), Granger et Gray (GG) et la 
combinaison des équations (CE) a été adaptée et évaluée de modéliser cette importante par 
des procédés classiques de données climatiques record dans les stations climatériques. Les 
estimations des modèles sont également comparées à ceux de l’évapotranspiration réelle 
mensuelle du bassin versant Ammameh moyen de l’équation du bilan hydrique. Combinaison 
équation avec un coefficient de détermination de 0,84 et l’erreur quadratique moyenne 0,46 
de meilleurs résultats que les autres modèles empiriques.

Le meilleur modèle ANN entre 13 combinaisons différentes et le modèle empirique est un 
modèle avec un minimum d’ANN5, température maximale et de l’évaporation dans la casserole 
d’entrée du modèle et avec un coefficient de détermination de 0,88 et l’erreur quadratique 
moyenne 0,32 mm dans la journée.

Températures minimale et maximale en entrée du modèle (ANN1), avec 0,83 coefficient de 
détermination est la plus faible des résultats, mais en combinaison avec l’équation comparer 
les huit entrées paramètre climatique existe seulement un pour cent déférent entre le coefficient 
de détermination. Coefficient de détermination dans le modèle ANN14 est de deux pour 
cent de beter avec la combinaison équation. Également le modèle ANN3 avec un coefficient 
de détermination de 0,87 et 0,32 mm dans la précision chaque jour, avec la combinaison 
de la température que l’air et la vitesse du vent est le modèle approprié pour une précision 
supérieure vers ANN1 modèle et les données exigence Lesser vers ANN5 modèle. Le résultat 
de la recherche montre que l’évapotranspiration réelle peut être estimée avec succès avec 
six pour cent du coefficient de détermination comparé avec la combinaison de l’équation au 
moyen des données climatiques disponibles.

Mots clés : Evapotranspiration, modèles du Réseau des Neurones Artificiels, méthodes 
empiriques, water balance, bassin versant de Jajroud.

(Traduction française telle que fournie par les auteurs)
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1. INTRODUCTION

Actual evapotranspiration (ET) estimates are necessary for integrated water resources 
management and modeling studies related to hydrology, agronomy, forestry, irrigation, flood 
and lake ecosystems (Terzi and Keskin 2005). 

Although there is an adequate network of stations at which precipitation is measured, very 
few measurements of the ET are made in Iran. With respect to ET from a catchment, it is 
very difficult to measure it directly. Two kinds of indirect methods are used to calculate actual 
ET from a catchment. The first kind uses water balance of the catchment. The accuracy of 
actual ET estimates from this method depends on the accuracy of runoff and precipitation 
data, and represents only an average value for the entire catchment. The other kind uses 
climatic data. Many of the formula have been used to estimate potential ET using climatic 
data, and they require the condition that the area in question should have actively transpiring 
vegetation and an adequate fetch (Penman, 1961). This paper describes three empirical 
models for estimating actual ET from Ammameh catchment.

Determination of AET is complex and nonlinear phenomenon because it depends on several 
interacting climatological factors. Artificial neural network (ANN) is a tool that can be used 
to estimate AET.

In the recent decades, much effort has been made to the use of Artificial Neural Network 
(ANN) models in various sciences. Research results on water resources show that are shown 
the ANNs are suitable alternative for such model that predict runoff from rainfall, river flow, 
entrance flow to the reservoir, sediment load and ET0 (Sudheer et al, 2004; Kisi 2004 and 
2005; Trajkovic et al 2003, Coulibaly et al 2000). 

Also some studies have shown that ANN models have more accuracy than conventional 
models (Kumar et al, 2002). 

Review related to the use of ANN models for estimating ET show that several models for 
estimating ET0 has been developed (Trajkovic et al, 2003; Sudheer et al, 2003; Kisi, 2007; 
Jianbiao,2002). But their use for estimating actual ET is limited to Sudheer’s (2003) research. 
They investigated the ANN model’s ability to estimate daily ET by using weather data for rice 
field. Comparison of their results with those of lysimeter studies, showed that these models 
have a good accuracy (Sudheer et al, 2003).

This study attempts to evaluate the comparative performance of empirical equations and 
ANN in determining the actual ET from Ammameh catchment. The estimates of the models 
are also compared with those of the monthly actual ET of Ammameh catchment that was 
measured by using water balance equation.

1.1 Study catchment and data base 

The Ammameh catchment was selected to demonstrate the methodology and algorithms 
investigated in this paper. The Ammameh catchment (37.2 km2) is one of the alpine 
subcatchments of Jajroud River, in Iran. It is rocky and has steep slopes. The Kamarkhani 
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station at the downstream end of the catchment records daily discharge information. Average 
annual precipitation is 567 mm. The dominant land use of the catchment is pastures. All the 
stream flows through the catchment during January to May were attributed to snowmelt 
during this period, as the area is mountainous with little ground water contribution. The 
monthly climatic data of three automated weather stations, Ammameh (at the middle of 
the Catchment) (Latitude 35o 54’N, Longitude 51o 35’W), Rahatabad (Latitude 35o 53’N, 
Longitude 51o 37’W) and Kalokan Station (Latitude 35o 53’N, Longitude 51o 32’W) are used 
in the study. The data sample consists of thirty five years (1970–2005) of monthly records 
of air temperature (T), solar radiation (Rs), wind speed (U2), precipitation (P), humidity (RH) 
and pan evaporation (E). For each station, 70% of the whole data (348 monthly values) are 
considered for training and the remaining 30% (72 monthly values) for testing. The location 
of the Ammameh catchment is shown in Figure 1. 

Fig. 1. Location of the catchment and climatological stations (Situation des bassins versants 
en Iran et en stations climatologique étudiées région)

2. THEORY AND METHODS OF DATA ANALYSIS

2.1 Water balance analysis 

Water balance checks in the catchment showed that it was watertight, which is a condition to 
be satisfied to make  water balance equation useful for estimation of AET, within the accuracy 
of other hydrological measurements.
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Streamfow data were organized in chronological order and daily hydrographs were drawn 
(Figure 2). The hydrographs displayed a number of troughs and crests from which identical 
recession limbs were used to discern the time interval over which a water balance equation 
was applied in a simple form. From the hydrograph, two points with equal discharges (say 1 
and 2 as shown in Fig. 2) were chosen, each on recession limbs. The water balance equation 
between points 1 and 2 is:
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Fig. 2.  Mean daily discharge hydrograph for Ammameh catchment (Hydrogramme moyenne 
quotidienne de rejet pour le captage ammameh)

where t is the time interval between points 1 and 2 in days, and AETt , Pt , Rt and ΔSt 
represent actual ET, rainfall, runof and change in storage, respectively, in depth units (mm) 
over time interval t.

The catchment was assumed to obey the linear law (S = Kq), where S is the storage (m3), K 
is the storage parameter (days) and q is the discharge (m3/s). Therefore, for points 1 and 2 
showing the same discharge, ΔSt = 0 and Equation (1) becomes:

 
ttt RPAET −=
         

(2)

The value of runof was obtained as the area of the shaded region, whereas Pt was obtained 
as the sum of daily rainfall between points 1 and 2. Taking the hydrograph of one of the 
catchments given in Figure 2 as an example (1970-1971: October, November, December 
and January), the rainfall between points 1 and 2 (99 days) was 170.9 mm, while the runoff 
was 33.8 mm.
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The other segments, as indicated by the vertical lines, were also used to estimate AET over 
corresponding time intervals. The AET for a given month was evaluated as the average of all 
the segments that could be isolated in that given month.

2.2 Artificial neural network (ANN)

In this study, an ANN of the multilayer perceptron (MLP) type with one-input layer, one-hidden 
layer and one -output layer was used. The transfer function in the networks was SigmoidAxon 
(SI) and TanhAxon (TH). Backpropagation (BP) algorithm was employed to train the MLP 
neural network. Conjugate-Gradient (CG) and Levenberg-Marquardt (LM) algorithm was 
used with an early stopping criterion to improve the network training speed and efficiency. 
For the criterion, all the data were divided into three sets (Coulibaly et al. 2000). The first 
set is the training set for determining the weights and biases of the network. The second 
set is the validation set for evaluating the weights and biases and for deciding when to stop 
training. The last data set is for validating the weights and biases to verify the effectiveness 
of the stopping criterion and to estimate the expected network operation on new data sets. 
In this study, for training the network, the data were divided into two parts: The first part 
(228 patterns) was used for network training and the second part (72 patterns) was used for 
testing the trained network. Seventy percent of the training set was reserved for training the 
ANN and 30% were used to validate the training.

Since the purpose of this study was the estimation of AET, the ANN has only one output 
variable. The measured monthly AET (by means of Water balance analysis) values were 
employed for output values. The number of hidden nodes in the ANN is determined empirically 
by trial and error, considering the need to derive reasonable results. In order to suit the 
consistency of the model, all source data are firstly normalized in the range [0.0, 1.0] and 
then returned to original values after the simulation using equation 3:

 

minmax

min

XX
XXX norm −

−
=

        
(4)

where Xnorm is the normalized value; X is the original value; Xmin and Xmax are the maximum and 
minimum of original values. Twelve input structures of the climatic data are shown  in Table 1.

Table 1. The models climatic inputs data in artificial neural network (Les modèles climatiques 
les données entrées dans le réseau de neurones artificiels)

Model Inputs parameters Model Inputs parameters

ANN1 Tmin,Tmax ANN7 Tmin,Tmax,Ra

ANN2 Tmean,RS ANN8 Tmin,Tmax,Epan,RH

ANN3 Tmean,U2 ANN9 Tmean,RS,RH,U2

ANN4 Tmean,RH ANN10 Tmin,Tmax,Ra,RH

ANN5 Tmin,Tmax,Epan ANN11 Tmin,Tmax,Epan,RH,U2

ANN6 Tmean,RS,RH ANN12 Tmin,Tmax, Ra,RH,U2

ANN13 Tmin,Tmax, RS,RH,U2
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2.3 Empirical equations 

2.3.1 CE model

The Penman equation is widely known as the combined equation model for estimating 
evaporation. It was developed originally to estimate the potential evaporation of water and 
saturated land surfaces and is usually expressed as                      

))(( asa
n

pen eeuf
L
RE −

+∆
+

+∆
∆

=
γ

γ
γ      

(5)

in which Epen (mm day-1) is the potential evaporation, Rn (W m-2) is the net radiation, L is 
the latent heat of vaporization, Δ (mbar ºC-1) is the ratio of change of vapour pressure with 
respect to temperature, esa(mbar) is the saturation vapour pressure of the air, ea (mbar) is the 
vapour pressure of the air, and f(u) is the function of wind speed at 2 m above the ground. 
The spatially distributed net radiation Rn and wind function f(u) may be estimated by the 
following equations,

)9.01.0)(092.56.0()273()55.18.0()1( 4

N
neT

N
nIR aaHn +−+−+−= σα

 
(6)

)54.01(35.0)( 2UUf +=        
(7)

in which IH is the incident global radiation (Wm-2); n(h) is the sunshine duration, N(h) is the 
maximum possible sunshine duration, σ is the Stefan–Boltzmann constant  = (5.67 x 10-

8) Wm-2 K-4, Ta ºC is the air temperature, and α is albedo, a measure of surface reflectivity 
and dependent on the nature of surface, the water content of the soil, solar altitude, and 
the atmospheric conditions. In Equation (5), the first term represents a lower limit on the 
evaporation from moist surfaces; the second term represents the effects of large-scale 
advection (Hobbins et al., 2001a). In order to convert the potential ET to the actual ET, a 
conversion factor ϕ with a value of 0.6–0.8 was proposed by Penman (1948) as follows:

Pen
CE
a EE ϕ=

         
(8)

With the combination of the actual ET data measured by a weighing lysimeter, with both 
diameter and length of 2 m, as well as other related meteorological data, the following equation 
was proposed by Kotoda (1986):

1000
)6.239.215.0(468.0 UTP −+

+=ϕ
      

(9)

in which P (mm month-1) is the precipitation, T (ºC) is the air temperature, and u(ms-1) the 
wind speed 1.6 m above the ground. The effect from rooting depth and interception losses 
is partly covered by the inclusion of precipitation in Equation (9).
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2.3.2 AA model

In the AA model (Brutsaert and Stricker, 1979), the ETp is calculated by combining information 
from the energy budget and water vapour transfer in the Penman (1948) equation:

a
n ERETp

γ
γ

λγ +∆
+

+∆
∆

=
       

(10)

where Rn is the net radiation near the surface, Δ is the slope of the saturation vapour pressure 
curve at the air temperature, γ is the psychrometric constant, λ is the latent heat, and Ea is 
the drying power of the air, which in general can be written as

))(( aSZa eeUfE −=
        

(11)

where f(Uz) is a function of the mean wind speed Uz at a reference level z above the ground, 
and ea and es are the vapor pressure of the air and the saturation vapor pressure at the air 
temperature respectively. In this study, the empirical linear approximation for f(Uz) originally 
suggested by Penman (1948) is used:

)54.01(0026.0)( 2UUf Z +=        (12)

which, for wind speed at 2 m elevation in ms-1 and vapor pressure in Pascal, yields Ea in mm 
day-1. This formulation of f(U2) was first proposed by Brutsaert and Stricker (1979) for use 
in the AA model operating at a time scale of a few days. Substituting Equation (11) and the 
wind function Equation (12) into Equation (10) yields the expression for ETp used by Brutsaert 
and Stricker (1979) in the original AA model:
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(13)

The AA model calculates ETw (Brutsaert and Stricker, 1979) using the Priestley and Taylor 
(1972) partial equilibrium ET equation:

λγ
α nAA

W
RET

+∆
∆

=
        

(14)

where α =.1.26. Different values for α have been reported in the literature; the original value 
is tested in this study. Substitution of Equations (13) and (14) into Equation (15) results in the 
expression for ETa in the AA model:
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2.3.3 GG model

Granger (1989) showed that an equation similar to Penman’s could also be derived following 
the approach of Bouchet’s (1963) complementary relationship. Granger and Gray (1989) 
derived a modified form of Penman’s equation for estimating the actual evapotranspiration 
from different non-saturated land covers:

 
Ea

G
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G
GET nGG
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(16)

where G is a dimensionless relative evapotranspiration parameter. Granger and Gray (1989) 
showed that the relative evapotranspiration, the ratio of actual to potential evapotranspiration, 
G = ETa/ETp is a unique parameter for each set of atmospheric and surface conditions. 
Based on daily estimated values of actual evapotranspiration from water balance, Granger 
and Gray (1989) showed that there exists a unique relationship between G and a parameter 
that they called the relative drying power D, given as:
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And later, Granger (1998) to modified Eq. (14) 
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2.4 Criteria of evaluation 

The performances of the models developed in this study were evaluated using R2 and RMSE 
criteria, which are calculated as:
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In the above, N is the number of measured, Yi is the estimated AET (using the ANN methods), 
Xi is the measured AET (calculated with Water balance analysis),  X  and Y  are the average 
value for Xi and Yi. The RMSE is a measure of the residual standard deviation and should be 
as small as possible (optimally 0). 
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3. CONCLUSIONS AND RECOMMENDATIONS

In this study, the ability of artificial neural network models and empirical relations for estimating 
actual monthly evapotranspiration were assessed. Due to careful analysis of appropriate water 
balance in calculating the actual evapotranspiration, results of water balance as a base for 
comparison were used in this study (Karongo et al, 1977; Sharma, 1988; Kotoda, 1989; 
Morton, 1983; Chun, 1989).  

The results of simulation show the superiority of neural network models in comparison with the 
empirical relationships. According to the results of Table (2), the combined equation (CE) has 
higher accuracy and its R2 is about 6% higher as compared with the two empirical equations. 

Various neural network models to estimate real evapotranspiration were developed by a hidden 
layer and their results are presented in Table 2. As may be seen, the 52 neural network models 
with different input parameters, Levenberg-Marquardt training algorithm, Marquardt (LM) and 
Conjugate-Gradient (CG) and two types of stimulation sigmoid function (SI) and TanhAxon 
(TH) were constructed. Number of neurons in middle layer of these models was determined 
by trial and error method. Thus every model was trained 30 times with the number of neurons 
0 to 30 in hidden layer, and then tested using the RMSE and R2 criteria. 

Lowest RMSE for each model with the desired profile was considered to select the best 
number of neurons in the middle layer. It can be seen the R2 between 0.82-0.88 and RMSE 
between 0.31-0.48 mm/day could be obtained depending on the model type, neural network 
training method and transfer function. The highest performing models are ANN8 and ANN11. 
In either of them, the accuracy is 0.31 m/day. The R2 for these two models indicate that 88 
percent of the variation in actual ET is accounted for due to the variation in meteorological data. 

Minimum accuracy of the model is in ANN1 because of the least  input data used. The R2 
of this model that is about 0.82, which indicates that the maxima and minima data of air 
temperature changes alone account for 82% of the variation in the estimated actual ET. This 
result is useful for the stations where only temperatures are measured. 

According to the results of Table 3, the relative importance of meteorological parameters to 
estimate actual ET could be observed. By including the evaporation pan data with data of air 
temperature and relative humidity as input to the ANN model, the R2 and the RMSE improves 
a lot (RMSE = 0.45, R2 = 0.98). 

According to Table 3, training algorithm Levenberg-Marquardt (LM) and Conjugate-Gradient 
(CG) provides almost identical results and therefore estimates of ET by using either of the 
two an used. But between the transition functions used in this study (sigmoid and tangent 
hyperbolic) hyperbolic tangent function gives better results.

Table 2. Statistical performance evaluation criteria for empirical equations(Des critères 
statistiques d’évaluation des performances pour les equations empiriques)

RMSE, (mmd-1) R2 Empirical equations
0.51 0.81 Combination Equation (CE)
0.51 0.77 Advection–Aridity (AA)
0.92 0.78 Granger and Gray (GG)
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Table 3. Statistical performance evaluation criteria for each ANN models(Des reporting 
criteria Statistiques d’évaluation des performances des versez Modèles Every ANN)

Model Learn-
ing 
rule

Trans-
fer 

func-
tion

Pro-
cess-

ing Ele-
ments

R2 RMSE Model Learn-
ing 
rule

Trans-
fer 

func-
tion

Pro-
cess-

ing Ele-
ments

R2 RMSE

mmd-1 mmd-1

ANN 1 CG SI 2 82 0.37 ANN 7 LM SI 7 86 0.36

ANN 1 CG TH 21 82 0.36 ANN 7 LM TH 1 86 0.33

ANN 1 LM SI 20 82 0.37 ANN 8 CG SI 1 85 0.33

ANN 1 LM TH 15 82 0.38 ANN 8 CG TH 8 88 0.31

ANN 2 CG SI 8 84 0.35 ANN 8 LM SI 26 87 0.35

ANN 2 CG TH 18 85 0.34 ANN 8 LM TH 5 87 0.35

ANN 2 LM SI 15 85 0.34 ANN 9 CG SI 6 82 0.37

ANN 2 LM TH 3 85 0.34 ANN 9 CG TH 25 87 0.42

ANN 3 CG SI 12 86 0.32 ANN 9 LM SI 2 85 0.34

ANN 3 CG TH 29 87 0.32 ANN 9 LM TH 4 87 0.33

ANN 3 LM SI 22 87 0.35 ANN 10 CG SI 29 82 0.37

ANN 3 LM TH 7 87 0.32 ANN 10 CG TH 24 84 0.35

ANN 4 CG SI 2 84 0.37 ANN 10 LM SI 30 84 0.36

ANN 4 CG TH 10 86 0.46 ANN 10 LM TH 6 84 0.35

ANN 4 LM SI 27 85 0.34 ANN 11 CG SI 1 85 0.34

ANN 4 LM TH 22 85 0.34 ANN 11 CG TH 28 87 0.36

ANN 5 CG SI 7 87 0.32 ANN 11 LM SI 29 87 0.33

ANN 5 CG TH 3 87 0.32 ANN 11 LM TH 21 88 0.31

ANN 5 LM SI 10 87 0.34 ANN 12 CG SI 12 85 0.35

ANN 5 LM TH 8 87 0.32 ANN 12 CG TH 9 84 0.34

ANN 6 CG SI 8 80 0.39 ANN 12 LM SI 8 86 0.34

ANN 6 CG TH 7 86 0.33 ANN 12 LM TH 6 85 0.48

ANN 6 LM SI 2 84 0.35 ANN 13 CG SI 23 81 0.38

ANN 6 LM TH 26 85 0.37 ANN 13 CG TH 11 86 0.33

ANN 7 CG SI 10 85 0.34 ANN 13 LM SI 6 86 0.39

ANN 7 CG TH 23 85 0.33 ANN 13 LM TH 4 86 0.37
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Fig. 3. Comparaison of the AET estimated by ANN 8 and measured values by water balance 
analysis in test years (Comparaison de l’AET estimée par ANN 8 et les valeurs mesurées par 
l’analyse du bilan de l’eau au cours des années d’essai)

Based on the accuracy of the results for six years,  the ANN8 model was selected as the 
optimal and its results are presented in Figure 3. It can be seen that R2 for all years is greater 
than 0.98 and precision (RMSE) is in the range of 0.07-0.5 mm/day. The output data for all 
the six years are evenly distributed around the 1:1 line. In general, the results identify the 
suitable ANN model to estimate the actual ET from the Ammameh  watershed.
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