ECONOMIC COMPARISON OF SURFACE AND SUBSURFACE DRIP IRRIGATION METHODS AND IRRIGATION INTERVAL ON COTTON YIELD

Shojaat zare¹

ABSTRACT

This study was conducted to compare economically, two irrigation methods, surface and subsurface drip irrigation systems with different irrigation intervals, on cotton yield. Necessary data obtained from a research project conducted in Kashmar Agricultural Research Station in Khorasan Razavi province. During 2006-2008, design treatments were included irrigation interval (2, 4 & 6 day) and drip irrigation methods (surface and subsurface drip irrigation). Partial budgeting method was used for economic comparison.

Results indicated that all treatments have gross marginal benefit bigger than one, and net marginal benefit is positive too. So, in order to select economic irrigation method, rate of return index was used. Finally, after comparing both treatments, subsurface irrigation method with 4 days interval with %122 rate of return, obtained as the better irrigation method.

1. Introduction

According to the International Institute index for water management, Iran's water situation is Critical, and to preserve current situation ,our country should be able to increase up to 112 % to water resource until the end of 2025. with regard to the existing facilities, this seems impossible.

With regard to this fact that in the last five years ,almost, 90 percent of agricultural production has been irrigated crops, so it is neccessare to revision in water resources management for increase or keep current production. In this regard, One of the existing strategies is, using modern methods of irrigation.

Research indicate that using of micro irrigation systems not only decrease water consumption between 30 to 60 percent but also increeas crop yield between 20 to 70 percent.

At the present, situation of underground water resources in Khorasan province is critical, and in the majority of the plain of province ,underground water level falls every year, its result are, a decrease in wells and aqueducts out put and, an increase in energy costs of water extraction. So water extraction from 70 plain of 78 of province plain is forbidden and using of modern irrigation methods is in priority.

Dougherty and et al (2009) established , a seven-year study from 1998 on a Decatur silt loam to evaluate cotton yield and performance of drip irrigation tape products under conventional fertilizer application and fertigation compared to dryland cotton. Irrigated systems consistently yielded more than the dryland system over the course of the study; the latter had a strong positive return only when early-season rainfall was

^{1 -} Scientific Mission Member of Agriculture and Natural Resource Research Center of Khorasan Razavi Province, Iran.

E-mail:shojaat_z@yahoo.com

above the 30-yr norm. Fertigation offered no clear advantage over surface fertilization because the 7-yr average return of \$ 207 ha-1 was close to the return of \$ 212 ha-1 for comparable surface fertilized SDI. Irrigation increased 7-yr net returns, exceeding dryland systems by \$ 400 ha-1.

Brodsky and et al (2000) conducted a study to optimize irrigation management techniques for low energy precision application (LEPA) irrigation and subsurface drip irrigation (SDI), and compare resulting cotton lint yields and profitability of these irrigation approaches. Economic analysis of Texas High Plains cotton production showed that LEPA resulted in higher net returns to management and risk than SDI as irrigation capacity increased above the 0.1 in/d level. However, SDI treatments resulted in net returns of over \$80/ac and may be an acceptable alternative where LEPA installation costs are greater than \$333/ac, physical constraints prevent the use of LEPA, or SOI installation costs are lower than \$800/ac.

Styles and et al (1997) investigated effect of three methods of irrigation include subsurface drip irrigation (SDI), correct furrow and standard furrow on cotton yield in salinity soil. Cotton yield in SDI method was reported 16% more than the other methds, and Net income in three methods obtained respectively, 1623,1249 and 1457 \$ in hectares

Romero and et al (2005) A cost-benefit analysis performed for a mature, commercial almond plantation in Southeastern Spain to determine the profitability of several regulated deficit irrigation (RDI) strategies under subsurface drip irrigation conditions (SDI), compared to an irrigation regime covering 100% crop evapotranspiration (ETc). The plantation was subjected to three drip irrigation treatments for 4 years. T1 (control, surface drip irrigation)- irrigated at 100% ETc throughout the growth cycle, T2 (RDI treatment under SDI)- an irrigation strategy that provided 100% ETc except during the kernel-filling period, when only 20% ETc was provided and T3 (RDI treatment under SDI)—an irrigation strategy that provided 100% ETc except during the kernel-filling period (20% ETc) and post-harvest (50% ETc). A 45% water saving was achieved with strategy SDI T3, while almond production was reduced by only 17%, increasing water use efficiency compared to the control irrigation regime. SDI T3 had fixed overhead costs 9% higher than T1, however, the operating costs were 21% lower for SDI T3 compared to T1. This reduction in costs was basically due to the 45% saving in the cost of water and the corresponding saving in electricity. The break-even point was lower in SDI T3; each kilogram of almonds cost 0.03€ less to produce than in the control conditions. Related to this, the maximum price of water for obtaining profit 0 was 0.21€ m_3 for SDI T3 compared to 0.18€ m_3 for T1, indicating that higher water costs can be borne in SDI T3 (up to 0.03€ m 3 more expensive). Finally the profit/total costs ratio (used as an expression of the overall profitability of the orchard) indicated a greater profitability for the treatment SDI T3 compared to T1 (10.46 and 9.27%, respectively). The RDI strategy SDI T2 did not show economic indices or water use efficiency as much as those of SDI T3. From these results we conclude that RDI applied during kernel-filling and post-harvest under SDI conditions, and specifically the irrigation strategy SDI T3, may be considered economically appropriate in semiarid conditions in order to save water and improve water use efficiency.

2. Material and methods

In order to compare treatments economically ,Partial budgeting method was used .In this method, changes in benefits obtained from treathments compared to changes in its costs.So, first ,costs and income of each treatment are computed .then, net benefits of each treatment is computed by total production value minus costs that isn't common between treatments (so net benefit isn't equal to net income). In third step, total treatments are sorted by cost item ascending as a table, and finally,for compare trearments two by two, below relations are computed.

Marginal gross benefits of B treatment relative to A treatment =

Costs of B treatment –Costs of A treatment

A and B are treatments that must be compared.

Marginal net benefits of B treatment relative to A treatment = Marginal net benefits of B treatment- Marginal net benefits of A treatment

Marginal cost of B treatment relative to A treatment= cost of B treatment- cost of A treatment

		Marginal net benefits	
Marginal rate of return of B treatment relative to A treatment	= -		×100
		Marginal cost	

In this study, Pipe installation and harvest cost are not common. so, these are only costs that have been computed. costs and benefit are computed as current price of 2008

After treatments were sorted and above relation were computed, treatment that its Marginal gross benefits are less than 1 are omitted and again treatment comparing is repetted.

Remained treatment have Marginal gross benefits bigger than 1. In the last step, treatment which is end of table and have an acceptable marginal rate of return is selected as economic treatment.

3. Results and discussion

The results were shown in table 1 to 3.

Unit of prices of input and output is 10 rials and base on current price of 2008 year.

Cost difference of Pipe installation, is include laboure for furrow and fill it. Cost of cotton Harvesting, computed base on average cost of cotton harvesting by cotton planters per KG in Khorasan province.

For computing "Cost difference of harvesting", harvest cost of treatment that have the lowest harvest cost, was reduced from harvest cost.

Gross benefit per ha was computed base on average price of cotton that cotton planters sold their products.

Net benefit of each treatment was computed from gross benefit mius total cost difference.

Result indicated that all treatments have marginal gross benefit bigger than one, and marginal net benefit is positive too. so, all treatment remain in comparsion and aren't delet. In this situation ,In order to select economic irrigatin method ,rate of return index is used. finally, after compare treatments two by two, Subsurface irrigation method with 4 days interval with %122 rate of return(table 3), obtained as the best irrigation method (consider that maximum of rate of return is not base of dicision. because treatments are compared two by two).

	Net	benefit	1047260	1463600	991214	1613601	863423	1427635	2828158	3091185	2913555	3415006	2875294	2991253	1941710	2281393	1956385	2518305	1873360	001011E
	Gross benefit	per ha	1078468	1649709	1012908	1825174	863423	1607639	2828158	3220059	2928052	3598853	2883296	3103162	1953313	2434884	1970480	2712014	1873360	0066404
	Total cost	difference	31208	186109	21694	211573	0	180004	0	128874	14497	183846	8002	111910	11603	153491	14094	193709	0	1 1 1 0 6 0
	Cost difference of	harvesting	31208	114109	21694	139573	0	108004	0	56874	14497	111846	8002	39910	11603	81491	14094	121709	0	CODE
	Harvest	cost	156512	239413	146998	264877	125304	233307	410434	467309	424931	522281	418436	450344	283473	353361	285964	393579	271870	21076
	Cost difference of Pipe installation			72000		72000		72000		72000		72000		72000		72000		72000		00002
	viold	hicin	1715.8	2624.7	1611.5	2903.8	1373.7	2557.7	4499.6	5123.1	4658.5	5725.7	4587.3	4937.1	3107.7	3873.9	3135.0	4314.8	2980.5	A 7475
	ents	Method	Surrface	SDI	Surrface	SDI	Surrface	SDI	Surrface	SDI	Surrface	SDI	Surrface	SDI	Surrface	SDI	Surrface	SDI	Surrface	IUS
Treatme	Treatme	Interval	Two days	Two days	Four days	Four days	Six days	Six days	Two days	Two days	Four days	Four days	Six days	Six days	Two days	Two days	Four days	Four days	Six days	Siv dave
	Voor	- 40	First	First	First	First	First	First	Second	Second	Second	Second	Second	Second	Average	Average	Average	Average	Average	Averade

 Table1. Initial calculation of treatments
 Source: Research calculation

	Date	of return		589	180	211	19	71	I	589	264	69	78	176	
fter sorting by increase of cost in the first and second year	Morainal	net benefit	ı	127791	56046	380376	35965	150001	ı	47136	38260	77698	99932	323821	
	Marainal	gross benefit	ı	7	7	4	2	7	I	7	7	2	7	7	
		Net benefit	863423	991214	1047260	1427635	1463600	1613601	2828158	2875294	2913555	2991253	3091185	3415006	
	Groce	benefit per ha	863423	1012908	1078468	1607639	1649709	1825174	2828158	2883296	2928052	3103162	3220059	3598853	
	Total cost difference		0	21694	31208	180004	186109	211573	0	8002	14497	111910	128874	183846	
	Cost	difference of harvesting	0	21694	31208	108004	114109	139573	0	8002	14497	39910	56874	111846	
mparisons a		Harvest cost	125304	146998	156512	233307	239413	264877	410434	418436	424931	450344	467309	522281	
Table 2 . Final results of treatments co	Cost difference of Pipe installation					72000	72000	72000				72000	72000	72000	
		Yield	1373.7	1611.5	1715.8	2557.7	2624.7	2903.8	4499.6	4587.3	4658.5	4937.1	5123.1	5725.7	
	nents	Method	Surrface	Surrface	Surrface	SDI	SDI	SDI	Surrface	Surrface	Surrface	SDI	SDI	SDI	culation
	Treatn	Interval	Six days	Four days	Two days	Six days	Two days	Four days	Two days	Six days	Four days	Six days	Two days	Four days	esearch calo
		Year	First	First	First	First	First	First	Second	Second	Second	Second	Second	Second	Source: R

Conclusion

1-Using of subsurface drip irrigation (SDI) method versus surface method have additional costs but is economical.

2-Subsurface irrigation method with 4 days interval with %122 rate of return, obtained economically as the best irrigation method.

4. References

1- Baghani, J. and Zarea, Sh., 2002. Application of Micro irrigation in Khorasan province, Iran. Journal of Agricultural Engineering Research 3.12: 51-64.

2- Bordovsky ,J.P., Lyle W. M. and Segarra, E. 2000. Economic Evaluation of Texas High Plains Cotton Irrigated

by LEPA and Subsurface Drip. Texas Journal of Agriculture and Natural Resources 13:67-73.

3- Dougherty, M., AbdelGadir, A.H., Fulton, J. P., Santen, E., Curtis, L. M., Burmester, C.H., Harkins, H. D. and Norris, B.E. 2009. Subsurface Drip Irrigation and Fertigation for North Alabama Cotton Production. The Journal of Cotton Science 13:227–237.

4-Styles, S., Oster, J.D., Bernaxconi, P., Fulton, A. and Phene, C. 1997. Demonstration of emerging technologies. In: Guitjens, J., Dudley, L. (Eds.). 1994. Agroecosystems: Sources, Control and Remediation. Pacific Division. American Association of Advanced Science, San Francisco.2: 183-206.

5-Romero, P., Garcia, J. and Botia, P. 2006. Cost-benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in Southeastern. Spain. Irrigation Science. 24: 175–184.